Elasticsearch 7.X 安装并使用

ES 7目前安装相当简单,这里简单记录下步骤。

1,https://www.elastic.co/cn/downloads/elasticsearch 官网按照版本下载安装包,比如 LINUX X86_64shaasc

2,解压后基本可以直接使用,但是这里需要简单配置下

vim elasticsearch.yml

开启network,path,cluster.nam node.name相关配置

3,启动/bin/elasticsearch

二 同步数据

这里需要将历史数据同步,采用

https://github.com/elasticsearch-dump/elasticsearch-dump

即可,不过需要更新最新的nodejs,

npm i -g n

n latest

然后同步数据即可!

 

Elasticsearch 如何做到快速检索 – 倒排索引的秘密

“All problems in computer science can be solved by another level of indirection.”

– David J. Wheeler

“计算机世界就是 trade-off 的艺术”

摘抄了一篇比较好的,上面图和方法在很多博客都被引用,但是相对组织的较好。

一、前言

最近接触的几个项目都使用到了 Elasticsearch (以下简称 ES ) 来存储数据和对数据进行搜索分析,就对 ES 进行了一些学习。本文整理自我自己的一次技术分享。

本文不会关注 ES 里面的分布式技术、相关 API 的使用,而是专注分享下 ”ES 如何快速检索“ 这个主题上面。这个也是我在学习之前对 ES 最感兴趣的部分。


本文大致包括以下内容:

  • 关于搜索

    • 传统关系型数据库和 ES 的差别

    • 搜索引擎原理

  • 细究倒排索引

    • 倒排索引具体是个什么样子的(posting list -> term dic -> term index)

    • 关于 postings list 的一些巧技 (FOR、Roaring Bitmaps)

    • 如何快速做联合查询?

二、关于搜索

先设想一个关于搜索的场景,假设我们要搜索一首诗句内容中带“前”字的古诗,

用 传统关系型数据库和 ES 实现会有什么差别?

如果用像 MySQL 这样的 RDBMS 来存储古诗的话,我们应该会去使用这样的 SQL 去查询

select name from poems where content like "%前%";
复制代码

这种我们称为顺序扫描法,需要遍历所有的记录进行匹配。

不但效率低,而且不符合我们搜索时的期望,比如我们在搜索“ABCD”这样的关键词时,通常还希望看到”A”,”AB”,”CD”,“ABC”的搜索结果。

于是乎就有了专业的搜索引擎,比如我们今天的主角 — ES。

搜索引擎原理

搜索引擎的搜索原理简单概括的话可以分为这么几步,

  • 内容爬取,停顿词过滤

    比如一些无用的像”的”,“了”之类的语气词/连接词

  • 内容分词,提取关键词

  • 根据关键词建立倒排索引

  • 用户输入关键词进行搜索

这里我们就引出了一个概念,也是我们今天的要剖析的重点 – 倒排索引。也是 ES 的核心知识点。

如果你了解 ES 应该知道,ES 可以说是对 Lucene 的一个封装,里面关于倒排索引的实现就是通过 lucene 这个 jar 包提供的 API 实现的,所以下面讲的关于倒排索引的内容实际上都是 lucene 里面的内容。

三、倒排索引

首先我们还不能忘了我们之前提的搜索需求,先看下建立倒排索引之后,我们上述的查询需求会变成什么样子,

这样我们一输入“前”,借助倒排索引就可以直接定位到符合查询条件的古诗。

当然这只是一个很大白话的形式来描述倒排索引的简要工作原理。在 ES 中,这个倒排索引是具体是个什么样的,怎么存储的等等,这些才是倒排索引的精华内容。

1. 几个概念

在进入下文之前,先描述几个前置概念。

term

关键词这个东西是我自己的讲法,在 ES 中,关键词被称为 term

postings list

还是用上面的例子,{静夜思, 望庐山瀑布}是 “前” 这个 term 所对应列表。在 ES 中,这些被描述为所有包含特定 term 文档的 id 的集合。由于整型数字 integer 可以被高效压缩的特质,integer 是最适合放在 postings list 作为文档的唯一标识的,ES 会对这些存入的文档进行处理,转化成一个唯一的整型 id。

再说下这个 id 的范围,在存储数据的时候,在每一个 shard 里面,ES 会将数据存入不同的 segment,这是一个比 shard 更小的分片单位,这些 segment 会定期合并。在每一个 segment 里面都会保存最多 2^31 个文档,每个文档被分配一个唯一的 id,从0(2^31)-1

相关的名词都是 ES 官方文档给的描述,后面参考材料中都可以找到出处。

2. 索引内部结构

上面所描述的倒排索引,仅仅是一个很粗糙的模型。真的要在实际生产中使用,当然还差的很远。

在实际生产场景中,比如 ES 最常用的日志分析,日志内容进行分词之后,可以得到多少的 term?

那么如何快速的在海量 term 中查询到对应的 term 呢?遍历一遍显然是不现实的。

term dictionary

于是乎就有了 term dictionary,ES 为了能快速查找到 term,将所有的 term 排了一个序,二分法查找。是不是感觉有点眼熟,这不就是 MySQL 的索引方式的,直接用 B+树建立索引词典指向被索引的数据。

term index

但是问题又来了,你觉得 Term Dictionary 应该放在哪里?肯定是放在内存里面吧?磁盘 io 那么慢。就像 MySQL 索引就是存在内存里面了。

但是如果把整个 term dictionary 放在内存里面会有什么后果呢?

内存爆了…

别忘了,ES 默认可是会对全部 text 字段进行索引,必然会消耗巨大的内存,为此 ES 针对索引进行了深度的优化。在保证执行效率的同时,尽量缩减内存空间的占用。

于是乎就有了 term index

Term index 从数据结构上分类算是一个“Trie 树”,也就是我们常说的字典树。这是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。

这棵树不会包含所有的 term,它包含的是 term 的一些前缀(这也是字典树的使用场景,公共前缀)。通过 term index 可以快速地定位到 term dictionary 的某个 offset,然后从这个位置再往后顺序查找。就想右边这个图所表示的。(怎么样,像不像我们查英文字典,我们定位 S 开头的第一个单词,或者定位到 Sh 开头的第一个单词,然后再往后顺序查询)

lucene 在这里还做了两点优化,一是 term dictionary 在磁盘上面是分 block 保存的,一个 block 内部利用公共前缀压缩,比如都是 Ab 开头的单词就可以把 Ab 省去。二是 term index 在内存中是以 FST(finite state transducers)的数据结构保存的。

FST 有两个优点:

  • 空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间
  • 查询速度快。O(len(str)) 的查询时间复杂度。

FST 的理论比较复杂,本文不细讲

延伸阅读:https://www.shenyanchao.cn/blog/2018/12/04/lucene-fst/

OK,现在我们能得到 lucene 倒排索引大致是个什么样子的了。

四、关于 postings list 的一些巧技

在实际使用中,postings list 还需要解决几个痛点,

  • postings list 如果不进行压缩,会非常占用磁盘空间,
  • 联合查询下,如何快速求交并集(intersections and unions)

对于如何压缩,可能会有人觉得没有必要,”posting list 不是已经只存储文档 id 了吗?还需要压缩?”,但是如果在 posting list 有百万个 doc id 的情况,压缩就显得很有必要了。(比如按照朝代查询古诗?),至于为啥需要求交并集,ES 是专门用来搜索的,肯定会有很多联合查询的需求吧 (AND、OR)。

按照上面的思路,我们先将如何压缩。

1. 压缩

Frame of Reference

在 lucene 中,要求 postings lists 都要是有序的整形数组。这样就带来了一个很好的好处,可以通过 增量编码(delta-encode)这种方式进行压缩。

比如现在有 id 列表 [73, 300, 302, 332, 343, 372],转化成每一个 id 相对于前一个 id 的增量值(第一个 id 的前一个 id 默认是 0,增量就是它自己)列表是[73, 227, 2, 30, 11, 29]在这个新的列表里面,所有的 id 都是小于 255 的,所以每个 id 只需要一个字节存储

实际上 ES 会做的更加精细,

它会把所有的文档分成很多个 block,每个 block 正好包含 256 个文档,然后单独对每个文档进行增量编码,计算出存储这个 block 里面所有文档最多需要多少位来保存每个 id,并且把这个位数作为头信息(header)放在每个 block 的前面。这个技术叫 Frame of Reference

上图也是来自于 ES 官方博客中的一个示例(假设每个 block 只有 3 个文件而不是 256)。

FOR 的步骤可以总结为:

进过最后的位压缩之后,整型数组的类型从固定大小 (8,16,32,64 位)4 种类型,扩展到了[1-64] 位共 64 种类型。

通过以上的方式可以极大的节省 posting list 的空间消耗,提高查询性能。不过 ES 为了提高 filter 过滤器查询的性能,还做了更多的工作,那就是缓存

Roaring Bitmaps (for filter cache)

在 ES 中,可以使用 filters 来优化查询,filter 查询只处理文档是否匹配与否,不涉及文档评分操作,查询的结果可以被缓存。

对于 filter 查询,es 提供了 filter cache 这种特殊的缓存,filter cache 用来存储 filters 得到的结果集。缓存 filters 不需要太多的内存,它只保留一种信息,即哪些文档与 filter 相匹配。同时它可以由其它的查询复用,极大地提升了查询的性能。

我们上面提到的 Frame Of Reference 压缩算法对于 postings list 来说效果很好,但对于需要存储在内存中的 filter cache 等不太合适。

filter cache 会存储那些经常使用的数据,针对 filter 的缓存就是为了加速处理效率,对压缩算法要求更高。

对于这类 postings list,ES 采用不一样的压缩方式。那么让我们一步步来。

首先我们知道 postings list 是 Integer 数组,具有压缩空间。

假设有这么一个数组,我们第一个压缩的思路是什么?用位的方式来表示,每个文档对应其中的一位,也就是我们常说的位图,bitmap。

它经常被作为索引用在数据库、查询引擎和搜索引擎中,并且位操作(如 and 求交集、or 求并集)之间可以并行,效率更好。

但是,位图有个很明显的缺点,不管业务中实际的元素基数有多少,它占用的内存空间都恒定不变。也就是说不适用于稀疏存储。业内对于稀疏位图也有很多成熟的压缩方案,lucene 采用的就是roaring bitmaps

我这里用简单的方式描述一下这个压缩过程是怎么样,

将 doc id 拆成高 16 位,低 16 位。对高位进行聚合 (以高位做 key,value 为有相同高位的所有低位数组),根据低位的数据量 (不同高位聚合出的低位数组长度不相同),使用不同的 container(数据结构) 存储。

  • len<4096 ArrayContainer 直接存值

  • len>=4096 BitmapContainer 使用 bitmap 存储

分界线的来源:value 的最大总数是为2^16=65536. 假设以 bitmap 方式存储需要 65536bit=8kb,而直接存值的方式,一个值 2 byte,4K 个总共需要2byte*4K=8kb。所以当 value 总量 <4k 时,使用直接存值的方式更节省空间。

空间压缩主要体现在:

  • 高位聚合 (假设数据中有 100w 个高位相同的值,原先需要 100w2byte,现在只要 12byte)

  • 低位压缩

缺点就在于位操作的速度相对于原生的 bitmap 会有影响。

这就是 trade-off 呀。平衡的艺术。

2. 联合查询

讲完了压缩,我们再来讲讲联合查询。

先讲简单的,如果查询有 filter cache,那就是直接拿 filter cache 来做计算,也就是说位图来做 AND 或者 OR 的计算。

如果查询的 filter 没有缓存,那么就用 skip list 的方式去遍历磁盘上的 postings list。

以上是三个 posting list。我们现在需要把它们用 AND 的关系合并,得出 posting list 的交集。首先选择最短的 posting list,逐个在另外两个 posting list 中查找看是否存在,最后得到交集的结果。遍历的过程可以跳过一些元素,比如我们遍历到绿色的 13 的时候,就可以跳过蓝色的 3 了,因为 3 比 13 要小。

用 skip list 还会带来一个好处,还记得前面说的吗,postings list 在磁盘里面是采用 FOR 的编码方式存储的

会把所有的文档分成很多个 block,每个 block 正好包含 256 个文档,然后单独对每个文档进行增量编码,计算出存储这个 block 里面所有文档最多需要多少位来保存每个 id,并且把这个位数作为头信息(header)放在每个 block 的前面。

因为这个 FOR 的编码是有解压缩成本的。利用 skip list,除了跳过了遍历的成本,也跳过了解压缩这些压缩过的 block 的过程,从而节省了 cpu

五、总结

下面我们来做一个技术总结(感觉有点王刚老师的味道😂)

  • 为了能够快速定位到目标文档,ES 使用倒排索引技术来优化搜索速度,虽然空间消耗比较大,但是搜索性能提高十分显著。
  • 为了能够在数量巨大的 terms 中快速定位到某一个 term,同时节约对内存的使用和减少磁盘 io 的读取,lucene 使用 “term index -> term dictionary -> postings list” 的倒排索引结构,通过 FST 压缩放入内存,进一步提高搜索效率。
  • 为了减少 postings list 的磁盘消耗,lucene 使用了 FOR(Frame of Reference)技术压缩,带来的压缩效果十分明显。
  • ES 的 filter 语句采用了 Roaring Bitmap 技术来缓存搜索结果,保证高频 filter 查询速度的同时降低存储空间消耗。
  • 在联合查询时,在有 filter cache 的情况下,会直接利用位图的原生特性快速求交并集得到联合查询结果,否则使用 skip list 对多个 postings list 求交并集,跳过遍历成本并且节省部分数据的解压缩 cpu 成本

Elasticsearch 的索引思路

将磁盘里的东西尽量搬进内存,减少磁盘随机读取次数 (同时也利用磁盘顺序读特性),结合各种压缩算法,用及其苛刻的态度使用内存。

所以,对于使用 Elasticsearch 进行索引时需要注意:

  • 不需要索引的字段,一定要明确定义出来,因为默认是自动建索引的
  • 同样的道理,对于 String 类型的字段,不需要 analysis 的也需要明确定义出来,因为默认也是会 analysis 的
  • 选择有规律的 ID 很重要,随机性太大的 ID(比如 Java 的 UUID) 不利于查询

最后说一下,技术选型永远伴随着业务场景的考量,每种数据库都有自己要解决的问题(或者说擅长的领域),对应的就有自己的数据结构,而不同的使用场景和数据结构,需要用不同的索引,才能起到最大化加快查询的目的。

这篇文章讲的虽是 Lucene 如何实现倒排索引,如何精打细算每一块内存、磁盘空间、如何用诡谲的位运算加快处理速度,但往高处思考,再类比一下 MySQL,你就会发现,虽然都是索引,但是实现起来,截然不同。笼统的来说,b-tree 索引是为写入优化的索引结构。当我们不需要支持快速的更新的时候,可以用预先排序等方式换取更小的存储空间,更快的检索速度等好处,其代价就是更新慢,就像 ES。

希望本篇文章能给你带来一些收获~

参考文档

  • https://www.elastic.co/cn/blog/frame-of-reference-and-roaring-bitmaps
  • https://www.elastic.co/cn/blog/found-elasticsearch-from-the-bottom-up
  • http://blog.mikemccandless.com/2014/05/choosing-fast-unique-identifier-uuid.html
  • https://www.infoq.cn/article/database-timestamp-02
  • https://zhuanlan.zhihu.com/p/137574234

作者:Richard_Yi
链接:https://juejin.im/post/6889020742366920712
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

golang调试工具Delve

Devle是一个非常棒的golang 调试工具,支持多种调试方式,直接运行调试,或者attach到一个正在运行中的golang程序,进行调试。

线上golang服务出现问题时,Devle是必不少的在线调试工具,如果使用docker,也可以把Devle打进docker镜像里,调试代码。

  安装Devle

安装Devle非常简单,直接运行go  get 即可:

go get -u github.com/derekparker/delve/cmd/dlv

如果你的go版本为1.5请先设置环境变量GO15VENDOREXPERIMENT=1再运行go get。我的go版本为1.10,不用设置。

   使用Devle调试golang服务

先写一个简单的web服务,然后使用Devle来进行调试。

在$GOPATH/src/github.com/mytest 文件夹下创建main.go

复制代码
 1 package main
 2 
 3 import (
 4     "fmt"
 5     "log"
 6     "net/http"
 7     "os"
 8 )
 9 
10 const port  = "8000"
11 
12 func main() {
13     http.HandleFunc("/hi", hi)
14 
15     fmt.Println("runing on port: " + port)
16     log.Fatal(http.ListenAndServe(":" + port, nil))
17 }
18 
19 func hi(w http.ResponseWriter, r *http.Request) {
20     hostName, _ := os.Hostname()
21     fmt.Fprintf(w, "HostName: %s", hostName)
22 }
复制代码

简单吧,一个运行在8000端口上的web服务,访问 hi会返回机器的名称。上面代码的行号是很有用的,等会我们打断点的时候会用到。

使用Delve运行我们的main.go

dlv debug ./main.go

 

可以输入help来看一下帮助文档

很简单的一些命令

我们先打在main方法上打一个断点:

b main.main

然后运行c 来运行到断点,

 

 

在func li  里打一个断点,我们可以使用

b main.hi

或者使用   “文件:行号”来打断点

b /home/goworkspace/src/github.com/mytest/main.go:20

 

 

现在执行continue 让服务跑起来。访问一下我们的服务,看hi方法会不会停下来。

curl localhost:8000/hi

看到了没,在19号停下来了。

输入 n 回车,执行到下一行

输入s 回车,单步执行

输入 print(别名p)输出变量信息

输入 args 打印出所有的方法参数信息

输入 locals 打印所有的本地变量

 

其他的命令我就不在这里给大家演示了,自己动动手试一下。

  使用Delve附加到运行的golang服务进行调试

先编译一下我们的main.go然后去行main

go build main.go

./main

 

然后使用Delve附加到我们的项目上,先看一下我们的项目的pid

ps aux|grep main
dlv attach 29260

 

在hi方法里打断点,然后执行c来等待断点的执行。

b /home/goworkspace/src/github.com/mytest/main.go:20

 

访问我们的服务器,看一下断点会不会被执行

curl localhost:8000/hi

 

断点执行了。然后调试你的代码吧!

gpt-2安装和使用

关于gpt2的安装,官网git上有详细的方法。这里提供一种docker安装的方式。

https://github.com/openai/gpt-2/blob/master/DEVELOPERS.md

Docker Installation

Build the Dockerfile and tag the created image as gpt-2:

docker build --tag gpt-2 -f Dockerfile.gpu . # or Dockerfile.cpu

Start an interactive bash session from the gpt-2 docker image.

You can opt to use the --runtime=nvidia flag if you have access to a NVIDIA GPU and a valid install of nvidia-docker 2.0.

docker run --runtime=nvidia -it gpt-2 bash
安装完成后,如果报:

AttributeError: module ‘tensorflow’ has no attribute ‘xxxx’的错误,重新卸载和安装tensorflow即可。:

1,pip uninstall tensorflow

2,pip install tensorflow

测试结果

测试结果

在简短的说明文档里,有三种示例运行模式,第一种是无限制乱说模式,

python3 src/generate_unconditional_samples.py | tee samples

这段命令行的意思是,| 这个通道符号之前是主要的调用代码,无限制生成文本片段,tee 是 linux 下的一个命令行工具,用于将产生的文本重定向到文件 samples 中。第二种运行模式是用几个参数改变无限制生成文本的特性,

python3 src/generate_unconditional_samples.py --top_k 40 --temperature 0.7 | tee samples

其中最重要的那个参数可能是 temperature (温度), 这个参数调节输出的随机性,温度越高,随机性越强,越低,出现copy训练语料里说过的话的几率就越大。具体实现应该是从 logits 到字典中字的 index 计算的 softmax 函数中加入温度参数 T,

[公式]

第三种运行模式, 交互式按照用户提示生成文本片段,这种模式最有意思,也是我们要调戏的对象。调用代码是,

python3 src/interactive_conditional_samples.py

下面是一个例子,效果不太好

Model prompt >>> Snow White and Transformers
======================================== SAMPLE 1 ========================================
: The Last Knight as the Bundles. Released in Japan in 1999 as The Predatory White, this manga Jamie appears to be made by Santa Claus.

In Friends: Firstly we find out that Jamie has successfully become an adult, despite being struggling with bankruptcy and all that, it seems. While young and seemingly used to working alone, he falls for the woman who treats her much better than other characters.

But wait no more, she fights after Jamie and soon falls in love with Daisy. It doesn’t take that long to make out even more love back in Nicholas Cage connection but it’s written in cadence so it’s not really that long back.

On Nicholas Cage, Jamie is finally embracing the role that he was actually engaged in as a teenager: He watched the Brown Brothers The Shawshank Redemption and that made him Titanite. It wasn’t until the same film that he completely succumbed to cowardice, rather in the way he said “Hey, this is why I have a skirt now, I’m not sure if it does any good. I’m starting to wonder if this is a animalistic mature woman. However, to serve men, they’re way too similar. It’s like a beautiful woman rather than the same bitch that had nothing to do with the man. Which being true, I’d never normally argue for this.”

Appear in Halloween 6th as a Regent of the Wardrobe, now standing in he saves Henry from being devastated by the title to Baby Belle.

Jamie in Space solves crises, saving Captain Race from mutated beasts throwing the latter super mutants into space.

In Uprising, in juxtaposing the monsters running through space to the drill that takes Charlie as the leader, Jamie sidesteps the danger through cryptic symbols by blending human emotions into his scattered messages—I ♡ A good way to pray. Boo Boo!

In Guys Who Wear Mini Hats, Jamie rescues rescuers: Jay McLean and Robbie Bar-Sotto.

In Moombaine’s Boarding Line of Asteroids, Jamie is found trying to figure out what’s going on behind the underground ship Icarus when Kitty Pope comes back. Initially the plot hinges on if “I cannot” being a signal to Cygnus with tubes coming in. However, one scene simply made sense, putting pressure on to Kitty by going back to Icarus. So why is the second handled the more foolish way.

Jamie is now raising Kitty Papillon up as a guide

[转]使用 Dockerfile 定制镜像

原文地址:https://yeasy.gitbooks.io/docker_practice/image/build.html

从刚才的 docker commit 的学习中,我们可以了解到,镜像的定制实际上就是定制每一层所添加的配置、文件。如果我们可以把每一层修改、安装、构建、操作的命令都写入一个脚本,用这个脚本来构建、定制镜像,那么之前提及的无法重复的问题、镜像构建透明性的问题、体积的问题就都会解决。这个脚本就是 Dockerfile。

Dockerfile 是一个文本文件,其内包含了一条条的 指令(Instruction),每一条指令构建一层,因此每一条指令的内容,就是描述该层应当如何构建。

还以之前定制 nginx 镜像为例,这次我们使用 Dockerfile 来定制。

在一个空白目录中,建立一个文本文件,并命名为 Dockerfile

$ mkdir mynginx
$ cd mynginx
$ touch Dockerfile

其内容为:

FROM nginx
RUN echo '<h1>Hello, Docker!</h1>' > /usr/share/nginx/html/index.html

这个 Dockerfile 很简单,一共就两行。涉及到了两条指令,FROM 和 RUN

FROM 指定基础镜像

所谓定制镜像,那一定是以一个镜像为基础,在其上进行定制。就像我们之前运行了一个 nginx 镜像的容器,再进行修改一样,基础镜像是必须指定的。而 FROM 就是指定 基础镜像,因此一个 Dockerfile 中 FROM 是必备的指令,并且必须是第一条指令。

在 Docker Hub 上有非常多的高质量的官方镜像,有可以直接拿来使用的服务类的镜像,如 nginxredismongomysqlhttpdphptomcat 等;也有一些方便开发、构建、运行各种语言应用的镜像,如 nodeopenjdkpythonrubygolang 等。可以在其中寻找一个最符合我们最终目标的镜像为基础镜像进行定制。

如果没有找到对应服务的镜像,官方镜像中还提供了一些更为基础的操作系统镜像,如 ubuntudebiancentosfedoraalpine 等,这些操作系统的软件库为我们提供了更广阔的扩展空间。

除了选择现有镜像为基础镜像外,Docker 还存在一个特殊的镜像,名为 scratch。这个镜像是虚拟的概念,并不实际存在,它表示一个空白的镜像。

FROM scratch
...

如果你以 scratch 为基础镜像的话,意味着你不以任何镜像为基础,接下来所写的指令将作为镜像第一层开始存在。

不以任何系统为基础,直接将可执行文件复制进镜像的做法并不罕见,比如 swarmetcd。对于 Linux 下静态编译的程序来说,并不需要有操作系统提供运行时支持,所需的一切库都已经在可执行文件里了,因此直接 FROM scratch 会让镜像体积更加小巧。使用 Go 语言 开发的应用很多会使用这种方式来制作镜像,这也是为什么有人认为 Go 是特别适合容器微服务架构的语言的原因之一。

RUN 执行命令

RUN 指令是用来执行命令行命令的。由于命令行的强大能力,RUN 指令在定制镜像时是最常用的指令之一。其格式有两种:

  • shell 格式:RUN <命令>,就像直接在命令行中输入的命令一样。刚才写的 Dockerfile 中的 RUN 指令就是这种格式。
RUN echo '<h1>Hello, Docker!</h1>' > /usr/share/nginx/html/index.html
  • exec 格式:RUN ["可执行文件", "参数1", "参数2"],这更像是函数调用中的格式。

既然 RUN 就像 Shell 脚本一样可以执行命令,那么我们是否就可以像 Shell 脚本一样把每个命令对应一个 RUN 呢?比如这样:

FROM debian:stretch

RUN apt-get update
RUN apt-get install -y gcc libc6-dev make wget
RUN wget -O redis.tar.gz "http://download.redis.io/releases/redis-5.0.3.tar.gz"
RUN mkdir -p /usr/src/redis
RUN tar -xzf redis.tar.gz -C /usr/src/redis --strip-components=1
RUN make -C /usr/src/redis
RUN make -C /usr/src/redis install

之前说过,Dockerfile 中每一个指令都会建立一层,RUN 也不例外。每一个 RUN 的行为,就和刚才我们手工建立镜像的过程一样:新建立一层,在其上执行这些命令,执行结束后,commit 这一层的修改,构成新的镜像。

而上面的这种写法,创建了 7 层镜像。这是完全没有意义的,而且很多运行时不需要的东西,都被装进了镜像里,比如编译环境、更新的软件包等等。结果就是产生非常臃肿、非常多层的镜像,不仅仅增加了构建部署的时间,也很容易出错。 这是很多初学 Docker 的人常犯的一个错误。

Union FS 是有最大层数限制的,比如 AUFS,曾经是最大不得超过 42 层,现在是不得超过 127 层。

上面的 Dockerfile 正确的写法应该是这样:

FROM debian:stretch

RUN buildDeps='gcc libc6-dev make wget' \
    && apt-get update \
    && apt-get install -y $buildDeps \
    && wget -O redis.tar.gz "http://download.redis.io/releases/redis-5.0.3.tar.gz" \
    && mkdir -p /usr/src/redis \
    && tar -xzf redis.tar.gz -C /usr/src/redis --strip-components=1 \
    && make -C /usr/src/redis \
    && make -C /usr/src/redis install \
    && rm -rf /var/lib/apt/lists/* \
    && rm redis.tar.gz \
    && rm -r /usr/src/redis \
    && apt-get purge -y --auto-remove $buildDeps

首先,之前所有的命令只有一个目的,就是编译、安装 redis 可执行文件。因此没有必要建立很多层,这只是一层的事情。因此,这里没有使用很多个 RUN 对一一对应不同的命令,而是仅仅使用一个 RUN 指令,并使用 && 将各个所需命令串联起来。将之前的 7 层,简化为了 1 层。在撰写 Dockerfile 的时候,要经常提醒自己,这并不是在写 Shell 脚本,而是在定义每一层该如何构建。

并且,这里为了格式化还进行了换行。Dockerfile 支持 Shell 类的行尾添加 \ 的命令换行方式,以及行首 # 进行注释的格式。良好的格式,比如换行、缩进、注释等,会让维护、排障更为容易,这是一个比较好的习惯。

此外,还可以看到这一组命令的最后添加了清理工作的命令,删除了为了编译构建所需要的软件,清理了所有下载、展开的文件,并且还清理了 apt 缓存文件。这是很重要的一步,我们之前说过,镜像是多层存储,每一层的东西并不会在下一层被删除,会一直跟随着镜像。因此镜像构建时,一定要确保每一层只添加真正需要添加的东西,任何无关的东西都应该清理掉。

很多人初学 Docker 制作出了很臃肿的镜像的原因之一,就是忘记了每一层构建的最后一定要清理掉无关文件。

构建镜像

好了,让我们再回到之前定制的 nginx 镜像的 Dockerfile 来。现在我们明白了这个 Dockerfile 的内容,那么让我们来构建这个镜像吧。

在 Dockerfile 文件所在目录执行:

$ docker build -t nginx:v3 .
Sending build context to Docker daemon 2.048 kB
Step 1 : FROM nginx
 ---> e43d811ce2f4
Step 2 : RUN echo '<h1>Hello, Docker!</h1>' > /usr/share/nginx/html/index.html
 ---> Running in 9cdc27646c7b
 ---> 44aa4490ce2c
Removing intermediate container 9cdc27646c7b
Successfully built 44aa4490ce2c

从命令的输出结果中,我们可以清晰的看到镜像的构建过程。在 Step 2 中,如同我们之前所说的那样,RUN 指令启动了一个容器 9cdc27646c7b,执行了所要求的命令,并最后提交了这一层 44aa4490ce2c,随后删除了所用到的这个容器 9cdc27646c7b

这里我们使用了 docker build 命令进行镜像构建。其格式为:

docker build [选项] <上下文路径/URL/->

在这里我们指定了最终镜像的名称 -t nginx:v3,构建成功后,我们可以像之前运行 nginx:v2 那样来运行这个镜像,其结果会和 nginx:v2 一样。

镜像构建上下文(Context)

如果注意,会看到 docker build 命令最后有一个 .. 表示当前目录,而 Dockerfile 就在当前目录,因此不少初学者以为这个路径是在指定 Dockerfile 所在路径,这么理解其实是不准确的。如果对应上面的命令格式,你可能会发现,这是在指定 上下文路径。那么什么是上下文呢?

首先我们要理解 docker build 的工作原理。Docker 在运行时分为 Docker 引擎(也就是服务端守护进程)和客户端工具。Docker 的引擎提供了一组 REST API,被称为 Docker Remote API,而如 docker 命令这样的客户端工具,则是通过这组 API 与 Docker 引擎交互,从而完成各种功能。因此,虽然表面上我们好像是在本机执行各种 docker 功能,但实际上,一切都是使用的远程调用形式在服务端(Docker 引擎)完成。也因为这种 C/S 设计,让我们操作远程服务器的 Docker 引擎变得轻而易举。

当我们进行镜像构建的时候,并非所有定制都会通过 RUN 指令完成,经常会需要将一些本地文件复制进镜像,比如通过 COPY 指令、ADD 指令等。而 docker build 命令构建镜像,其实并非在本地构建,而是在服务端,也就是 Docker 引擎中构建的。那么在这种客户端/服务端的架构中,如何才能让服务端获得本地文件呢?

这就引入了上下文的概念。当构建的时候,用户会指定构建镜像上下文的路径,docker build 命令得知这个路径后,会将路径下的所有内容打包,然后上传给 Docker 引擎。这样 Docker 引擎收到这个上下文包后,展开就会获得构建镜像所需的一切文件。

如果在 Dockerfile 中这么写:

COPY ./package.json /app/

这并不是要复制执行 docker build 命令所在的目录下的 package.json,也不是复制 Dockerfile 所在目录下的 package.json,而是复制 上下文(context) 目录下的 package.json

因此,COPY 这类指令中的源文件的路径都是相对路径。这也是初学者经常会问的为什么 COPY ../package.json /app 或者 COPY /opt/xxxx /app 无法工作的原因,因为这些路径已经超出了上下文的范围,Docker 引擎无法获得这些位置的文件。如果真的需要那些文件,应该将它们复制到上下文目录中去。

现在就可以理解刚才的命令 docker build -t nginx:v3 . 中的这个 .,实际上是在指定上下文的目录,docker build 命令会将该目录下的内容打包交给 Docker 引擎以帮助构建镜像。

如果观察 docker build 输出,我们其实已经看到了这个发送上下文的过程:

$ docker build -t nginx:v3 .
Sending build context to Docker daemon 2.048 kB
...

理解构建上下文对于镜像构建是很重要的,避免犯一些不应该的错误。比如有些初学者在发现 COPY /opt/xxxx /app 不工作后,于是干脆将 Dockerfile 放到了硬盘根目录去构建,结果发现 docker build 执行后,在发送一个几十 GB 的东西,极为缓慢而且很容易构建失败。那是因为这种做法是在让 docker build 打包整个硬盘,这显然是使用错误。

一般来说,应该会将 Dockerfile 置于一个空目录下,或者项目根目录下。如果该目录下没有所需文件,那么应该把所需文件复制一份过来。如果目录下有些东西确实不希望构建时传给 Docker 引擎,那么可以用 .gitignore 一样的语法写一个 .dockerignore,该文件是用于剔除不需要作为上下文传递给 Docker 引擎的。

那么为什么会有人误以为 . 是指定 Dockerfile 所在目录呢?这是因为在默认情况下,如果不额外指定 Dockerfile 的话,会将上下文目录下的名为 Dockerfile 的文件作为 Dockerfile。

这只是默认行为,实际上 Dockerfile 的文件名并不要求必须为 Dockerfile,而且并不要求必须位于上下文目录中,比如可以用 -f ../Dockerfile.php 参数指定某个文件作为 Dockerfile

当然,一般大家习惯性的会使用默认的文件名 Dockerfile,以及会将其置于镜像构建上下文目录中。

其它 docker build 的用法

直接用 Git repo 进行构建

或许你已经注意到了,docker build 还支持从 URL 构建,比如可以直接从 Git repo 中构建:

$ docker build https://github.com/twang2218/gitlab-ce-zh.git#:11.1

Sending build context to Docker daemon 2.048 kB
Step 1 : FROM gitlab/gitlab-ce:11.1.0-ce.0
11.1.0-ce.0: Pulling from gitlab/gitlab-ce
aed15891ba52: Already exists
773ae8583d14: Already exists
...

这行命令指定了构建所需的 Git repo,并且指定默认的 master 分支,构建目录为 /11.1/,然后 Docker 就会自己去 git clone 这个项目、切换到指定分支、并进入到指定目录后开始构建。

用给定的 tar 压缩包构建

$ docker build http://server/context.tar.gz

如果所给出的 URL 不是个 Git repo,而是个 tar 压缩包,那么 Docker 引擎会下载这个包,并自动解压缩,以其作为上下文,开始构建。

从标准输入中读取 Dockerfile 进行构建

docker build - < Dockerfile

cat Dockerfile | docker build -

如果标准输入传入的是文本文件,则将其视为 Dockerfile,并开始构建。这种形式由于直接从标准输入中读取 Dockerfile 的内容,它没有上下文,因此不可以像其他方法那样可以将本地文件 COPY 进镜像之类的事情。

从标准输入中读取上下文压缩包进行构建

$ docker build - < context.tar.gz

如果发现标准输入的文件格式是 gzipbzip2 以及 xz 的话,将会使其为上下文压缩包,直接将其展开,将里面视为上下文,并开始构建。

nodejs使用

简单的说 Node.js 就是运行在服务端的 JavaScript。

Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台。

Node.js是一个事件驱动I/O服务端JavaScript环境,基于Google的V8引擎,V8引擎执行Javascript的速度非常快,性能非常好。

当然现在真正用nodejs做为后端服务的情况并不多,很多大型公司还是使用java,golang,php和python.但是最近做网页爬虫的时候,总是有前端js加密,虽然可以看到js加密的方法,但是加密方式还是非常的不好翻译成其他语言。所以这里起一个nodejs的微服务专门做js的执行也是不错的。另外因为是基于v8引擎,现在有python,java,php等版本的v8js库,也可以使用。但是在兼容上来说,使用原生的nodejs还是非常简单。

一 安装

centos

sudo yum install nodejs

安装完成子自带了npm,这个类似于pip,可以方便安装扩展包。

二 使用

node xxx.js

简直不能再简单

三 启动http服务

因为这里要做路由等功能,使用express框架

npm install express

这里介绍下引入其他文件的办法

1,a.js


function a() {

return "hello world";

}

function b() {

return "b";

}

module.exports = {a, b};


var express = require("express");

var fun=require("./a");
var app = express();
app.get("/",function(req,res){
res.send("ok");
});
app.get("/hello",function(req,res){
res.contentType("json");

var str = fun.b();

console.log(str);
res.send(JSON.stringify({code:200,data:"success"}));
});
app.get("/user/:id",function(req,res){
var id = req.params.id;
var list = [];
list.push({id:101,name:"xxx",age:20});
list.push({id:102,name:"yyy",age:18});
res.contentType("json");
res.send(JSON.stringify(list[id]));
});
app.listen(8889,function(){
console.log("server running at http://127.0.0.1:8889/");
});

[go]json处理的一些总结

https://colobu.com/2017/06/21/json-tricks-in-Go/

本文是基于 Go 官方和 https://eager.io/blog/go-and-json/ 进行翻译整理的

JSON 是一种轻量级的数据交换格式,常用作前后端数据交换,Go 在 encoding/json 包中提供了对 JSON 的支持。

序列化

把 Go struct 序列化成 JSON 对象,Go 提供了 Marshal 方法,正如其含义所示表示编排序列化,函数签名如下:

1
func Marshal(v interface{}) ([]byte, error)

举例来说,比如下面的 Go struct:

1
2
3
4
5
type Message struct {
    Name string
    Body string
    Time int64
}

使用 Marshal 序列化:

1
2
3
m := Message{"Alice", "Hello", 1294706395881547000}
b, err := json.Marshal(m) 
fmt.Println(b) //{"Name":"Alice","Body":"Hello","Time":1294706395881547000}

在 Go 中并不是所有的类型都能进行序列化:

  • JSON object key 只支持 string
  • Channel、complex、function 等 type 无法进行序列化
  • 数据中如果存在循环引用,则不能进行序列化,因为序列化时会进行递归
  • Pointer 序列化之后是其指向的值或者是 nil

还需要注意的是:只有 struct 中支持导出的 field 才能被 JSON package 序列化,即首字母大写的 field

反序列化

反序列化函数是 Unmarshal ,其函数签名如下:

1
func Unmarshal(data []byte, v interface{}) error

如果要进行反序列化,我们首先需要创建一个可以接受序列化数据的 Go struct:

1
2
var m Message
err := json.Unmarshal(b, &m)

JSON 对象一般都是小写表示,Marshal 之后 JSON 对象的首字母依然是大写,如果序列化之后名称想要改变如何实现,答案就是 struct tags

Struct Tag

Struct tag 可以决定 Marshal 和 Unmarshal 函数如何序列化和反序列化数据。

指定 JSON filed name

JSON object 中的 name 一般都是小写,我们可以通过 struct tag 来实现:

1
2
3
type MyStruct struct {
    SomeField string `json:"some_field"`
}

SomeField 序列化之后会变成 some_field。

指定 field 是 empty 时的行为

使用 omitempty 可以告诉 Marshal 函数如果 field 的值是对应类型的 zero-value,那么序列化之后的 JSON object 中不包含此 field:

1
2
3
4
5
6
type MyStruct struct {
    SomeField string `json:"some_field,omitempty"`
}

m := MyStruct{}
b, err := json.Marshal(m) //{}

如果 SomeField == “” ,序列化之后的对象就是 {}

跳过 field

Struct tag “-” 表示跳过指定的 filed:

1
2
3
4
5
6
type MyStruct struct {
    SomeField string `json:"some_field"`
    Passwd string `json:"-"`
}
m := MyStruct{}
b, err := json.Marshal(m) //{"some_feild":""}

即序列化的时候不输出,这样可以有效保护需要保护的字段不被序列化。

反序列化任意 JSON 数据

默认的 JSON 只支持以下几种 Go 类型:

  • bool for JSON booleans
  • float64 for JSON numbers
  • string for JSON strings
  • nil for JSON null

在序列化之前如果不知道 JSON 数据格式,我们使用 interface{} 来存储。interface {} 的作用详见本博的其他文章。

有如下的数据格式:

1
b := []byte(`{"Name":"Wednesday","Age":6,"Parents":["Gomez","Morticia"]}`)

如果我们序列化之前不知道其数据格式,我们可以使用 interface{} 来存储我们的 decode 之后的数据:

1
2
var f interface{}
err := json.Unmarshal(b, &f)

反序列化之后 f 应该是像下面这样:

1
2
3
4
5
6
7
8
f = map[string]interface{}{
    "Name": "Wednesday",
    "Age":  6,
    "Parents": []interface{}{
        "Gomez",
        "Morticia",
    },
}

key 是 string,value 是存储在 interface{} 内的。想要获得 f 中的数据,我们首先需要进行 type assertion,然后通过 range 迭代获得 f 中所有的 key :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
m := f.(map[string]interface{})
for k, v := range m {
    switch vv := v.(type) {
    case string:
        fmt.Println(k, "is string", vv)
    case float64:
        fmt.Println(k, "is float64", vv)
    case []interface{}:
        fmt.Println(k, "is an array:")
        for i, u := range vv {
            fmt.Println(i, u)
        }
    default:
        fmt.Println(k, "is of a type I don't know how to handle")
    }
}

反序列化对 slice、map、pointer 的处理

我们定义一个 struct 继续对上面例子中的 b 进行反序列化:

1
2
3
4
5
6
7
8
type FamilyMember struct {
    Name    string
    Age     int
    Parents []string
}

var m FamilyMember
err := json.Unmarshal(b, &m)

这个例子是能够正常工作的,你一定也注意到了,struct 中包含一个 slice Parents ,slice 默认是 nil,之所以反序列化可以正常进行就是因为 Unmarshal 在序列化时进行了对 slice Parents 做了初始化,同理,对 map 和 pointer 都会做类似的工作,比如序列化如果 Pointer 不是 nil 首先进行 dereference 获得其指向的值,然后再进行序列化,反序列化时首先对 nil pointer 进行初始化

Stream JSON

除了 marshal 和 unmarshal 函数,Go 还提供了 Decoder 和 Encoder 对 stream JSON 进行处理,常见 request 中的 Body、文件等:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
jsonFile, err := os.Open("post.json")
if err != nil {
    fmt.Println("Error opening json file:", err)
    return
}

defer jsonFile.Close()
decoder := json.NewDecoder(jsonFile)
for {
    var post Post
    err := decoder.Decode(&post)
    if err == io.EOF {
        break
    }

    if err != nil {
        fmt.Println("error decoding json:", err)
        return
    }

    fmt.Println(post)
}

嵌入式 struct 的序列化

Go 支持对 nested struct 进行序列化和反序列化:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
type App struct {
	Id string `json:"id"`
}

type Org struct {
	Name string `json:"name"`
}

type AppWithOrg struct {
	App
	Org
}

func main() {
	data := []byte(`
        {
            "id": "k34rAT4",
            "name": "My Awesome Org"
        }
    `)

	var b AppWithOrg

	json.Unmarshal(data, &b)
	fmt.Printf("%#v", b)

	a := AppWithOrg{
		App: App{
			Id: "k34rAT4",
		},
		Org: Org{
			Name: "My Awesome Org",
		},
	}
	data, _ = json.Marshal(a)
	fmt.Println(string(data))
}

Nested struct 虽然看起来有点怪异,有些时候它将非常有用。

自定义序列化函数

Go JSON package 中定了两个 Interface Marshaler 和 Unmarshaler ,实现这两个 Interface 可以让你定义的 type 支持序列化操作。

错误处理

总是记得检查序列或反序列化的错误,可以让你的程序更健壮,而不是在出错之后带着错误继续执行下去。

参考资料

  1. 临时忽略struct空字段
  2. 临时添加额外的字段
  3. 临时粘合两个struct
  4. 一个json切分成两个struct
  5. 临时改名struct的字段
  6. 用字符串传递数字
  7. 容忍字符串和数字互转
  8. 容忍空数组作为对象
  9. 使用 MarshalJSON支持time.Time
  10. 使用 RegisterTypeEncoder支持time.Time
  11. 使用 MarshalText支持非字符串作为key的map
  12. 使用 json.RawMessage
  13. 使用 json.Number
  14. 统一更改字段的命名风格
  15. 使用私有的字段
  16. 忽略掉一些字段
  17. 忽略掉一些字段2

taowenjson-iterator的作者。 序列化和反序列化需要处理JSON和struct的关系,其中会用到一些技巧。 原文 Golang 中使用 JSON 的小技巧是他的经验之谈,介绍了一些struct解析成json的技巧,以及 json-iterator 库的一些便利的处理。

有的时候上游传过来的字段是string类型的,但是我们却想用变成数字来使用。 本来用一个json:”,string” 就可以支持了,如果不知道golang的这些小技巧,就要大费周章了。

参考文章:http://attilaolah.eu/2014/09/10/json-and-struct-composition-in-go/

临时忽略struct空字段

1
2
3
4
5
type User struct {
Email string `json:”email”`
Password string `json:”password”`
// many more fields…
}

如果想临时忽略掉空Password字段,可以用omitempty:

1
2
3
4
5
6
json.Marshal(struct {
*User
Password bool `json:”password,omitempty”`
}{
User: user,
})

临时添加额外的字段

1
2
3
4
5
type User struct {
Email string `json:”email”`
Password string `json:”password”`
// many more fields…
}

临时忽略掉空Password字段,并且添加token字段

1
2
3
4
5
6
7
8
json.Marshal(struct {
*User
Token string `json:”token”`
Password bool `json:”password,omitempty”`
}{
User: user,
Token: token,
})

临时粘合两个struct

通过嵌入struct的方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
type BlogPost struct {
URL string `json:”url”`
Title string `json:”title”`
}
type Analytics struct {
Visitors int `json:”visitors”`
PageViews int `json:”page_views”`
}
json.Marshal(struct{
*BlogPost
*Analytics
}{post, analytics})

一个json切分成两个struct

1
2
3
4
5
6
7
8
9
json.Unmarshal([]byte(`{
“url”: “attila@attilaolah.eu”,
“title”: “Attila’s Blog”,
“visitors”: 6,
“page_views”: 14
}`), &struct {
*BlogPost
*Analytics
}{&post, &analytics})

临时改名struct的字段

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
type CacheItem struct {
Key string `json:”key”`
MaxAge int `json:”cacheAge”`
Value Value `json:”cacheValue”`
}
json.Marshal(struct{
*CacheItem
// Omit bad keys
OmitMaxAge omit `json:”cacheAge,omitempty”`
OmitValue omit `json:”cacheValue,omitempty”`
// Add nice keys
MaxAge int `json:”max_age”`
Value *Value `json:”value”`
}{
CacheItem: item,
// Set the int by value:
MaxAge: item.MaxAge,
// Set the nested struct by reference, avoid making a copy:
Value: &item.Value,
})

用字符串传递数字

1
2
3
type TestObject struct {
Field1 int `json:”,string”`
}

这个对应的json是 {"Field1": "100"}

如果json是 {"Field1": 100} 则会报错

容忍字符串和数字互转

如果你使用的是jsoniter,可以启动模糊模式来支持 PHP 传递过来的 JSON。

1
2
3
import “github.com/json-iterator/go/extra”
extra.RegisterFuzzyDecoders()

这样就可以处理字符串和数字类型不对的问题了。比如

1
2
var val string
jsoniter.UnmarshalFromString(`100`, &val)

又比如

1
2
var val float32
jsoniter.UnmarshalFromString(`”1.23″`, &val)

容忍空数组作为对象

PHP另外一个令人崩溃的地方是,如果 PHP array是空的时候,序列化出来是[]。但是不为空的时候,序列化出来的是{"key":"value"}。 我们需要把 [] 当成 {} 处理。

如果你使用的是jsoniter,可以启动模糊模式来支持 PHP 传递过来的 JSON。

1
2
3
import “github.com/json-iterator/go/extra”
extra.RegisterFuzzyDecoders()

这样就可以支持了

1
2
var val map[string]interface{}
jsoniter.UnmarshalFromString(`[]`, &val)

使用 MarshalJSON支持time.Time

golang 默认会把 time.Time 用字符串方式序列化。如果我们想用其他方式表示 time.Time,需要自定义类型并定义 MarshalJSON

1
2
3
4
5
6
type timeImplementedMarshaler time.Time
func (obj timeImplementedMarshaler) MarshalJSON() ([]byte, error) {
seconds := time.Time(obj).Unix()
return []byte(strconv.FormatInt(seconds, 10)), nil
}

序列化的时候会调用 MarshalJSON

1
2
3
4
5
6
7
8
9
type TestObject struct {
Field timeImplementedMarshaler
}
should := require.New(t)
val := timeImplementedMarshaler(time.Unix(123, 0))
obj := TestObject{val}
bytes, err := jsoniter.Marshal(obj)
should.Nil(err)
should.Equal(`{“Field”:123}`, string(bytes))

使用 RegisterTypeEncoder支持time.Time

jsoniter 能够对不是你定义的type自定义JSON编解码方式。比如对于 time.Time 可以用 epoch int64 来序列化

1
2
3
4
5
import “github.com/json-iterator/go/extra”
extra.RegisterTimeAsInt64Codec(time.Microsecond)
output, err := jsoniter.Marshal(time.Unix(1, 1002))
should.Equal(“1000001”, string(output))

如果要自定义的话,参见 RegisterTimeAsInt64Codec 的实现代码

使用 MarshalText支持非字符串作为key的map

虽然 JSON 标准里只支持 string 作为 key 的 map。但是 golang 通过 MarshalText() 接口,使得其他类型也可以作为 map 的 key。例如

1
2
3
4
f, _, _ := big.ParseFloat(“1”, 10, 64, big.ToZero)
val := map[*big.Float]string{f: “2”}
str, err := MarshalToString(val)
should.Equal(`{“1″:”2”}`, str)

其中 big.Float 就实现了 MarshalText()

使用 json.RawMessage

如果部分json文档没有标准格式,我们可以把原始的信息用[]byte保存下来。

1
2
3
4
5
6
7
type TestObject struct {
Field1 string
Field2 json.RawMessage
}
var data TestObject
json.Unmarshal([]byte(`{“field1”: “hello”, “field2”: [1,2,3]}`), &data)
should.Equal(` [1,2,3]`, string(data.Field2))

使用 json.Number

默认情况下,如果是 interface{} 对应数字的情况会是 float64 类型的。如果输入的数字比较大,这个表示会有损精度。所以可以 UseNumber() 启用 json.Number 来用字符串表示数字。

1
2
3
4
5
decoder1 := json.NewDecoder(bytes.NewBufferString(`123`))
decoder1.UseNumber()
var obj1 interface{}
decoder1.Decode(&obj1)
should.Equal(json.Number(“123”), obj1)

jsoniter 支持标准库的这个用法。同时,扩展了行为使得 Unmarshal 也可以支持 UseNumber 了。

1
2
3
4
json := Config{UseNumber:true}.Froze()
var obj interface{}
json.UnmarshalFromString(“123”, &obj)
should.Equal(json.Number(“123”), obj)

统一更改字段的命名风格

经常 JSON 里的字段名 Go 里的字段名是不一样的。我们可以用 field tag 来修改。

1
2
3
4
5
6
7
8
output, err := jsoniter.Marshal(struct {
UserName string `json:”user_name”`
FirstLanguage string `json:”first_language”`
}{
UserName: “taowen”,
FirstLanguage: “Chinese”,
})
should.Equal(`{“user_name”:”taowen”,”first_language”:”Chinese”}`, string(output))

但是一个个字段来设置,太麻烦了。如果使用 jsoniter,我们可以统一设置命名风格。

1
2
3
4
5
6
7
8
9
10
11
12
import “github.com/json-iterator/go/extra”
extra.SetNamingStrategy(LowerCaseWithUnderscores)
output, err := jsoniter.Marshal(struct {
UserName string
FirstLanguage string
}{
UserName: “taowen”,
FirstLanguage: “Chinese”,
})
should.Nil(err)
should.Equal(`{“user_name”:”taowen”,”first_language”:”Chinese”}`, string(output))

使用私有的字段

Go 的标准库只支持 public 的 field。jsoniter 额外支持了 private 的 field。需要使用 SupportPrivateFields() 来开启开关。

1
2
3
4
5
6
7
8
9
import “github.com/json-iterator/go/extra”
extra.SupportPrivateFields()
type TestObject struct {
field1 string
}
obj := TestObject{}
jsoniter.UnmarshalFromString(`{“field1″:”Hello”}`, &obj)
should.Equal(“Hello”, obj.field1)

下面是我补充的内容

忽略掉一些字段

原文中第一节有个错误,我更正过来了。omitempty不会忽略某个字段,而是忽略空的字段,当字段的值为空值的时候,它不会出现在JSON数据中。

如果想忽略某个字段,需要使用 json:"-"格式。

1
2
3
4
5
type User struct {
Email string `json:”email”`
Password string `json:”password”`
// many more fields…
}

如果想临时忽略掉空Password字段,可以用-:

1
2
3
4
5
6
json.Marshal(struct {
*User
Password bool `json:”-“`
}{
User: user,
})

忽略掉一些字段2

如果不想更改原struct,还可以使用下面的方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
type User struct {
Email string `json:”email”`
Password string `json:”password”`
// many more fields…
}
type omit *struct{}
type PublicUser struct {
*User
Password omit `json:”-“`
}
json.Marshal(PublicUser{
User: user,
})

python抓取的一些总结

python作为爬虫的最常见语言,很有自己的优势。这里举一些常见的用法。

1,使用scrapy框架。

https://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/tutorial.html

2, 纯脚本

lib库

from concurrent.futures import ThreadPoolExecutor

from bs4 import BeautifulSoup

import Queue, time, random

import requests

提供一个比较粗糙的代码,使用到了python代理,queue,多线程,BeautifulSoup。最终print方法应该用线程锁避免打印错误。


#coding=utf-8
import requests
from concurrent.futures import ThreadPoolExecutor
import Queue, time, random
#import pymysql
from bs4 import BeautifulSoup
import re
import urllib
import urllib2
import gzip
import cStringIO
import datetime
import json
from StringIO import StringIO
import threading

import base64

index_url = 'https://www.juzimi.com/alltags'
page_url = 'https://www.juzimi.com/alltags?page=%s'

task_queue = Queue.Queue()

has_words = []
has_words_value = {}

lock=threading.Lock()

ip = ""
def getIp() :
global ip

url = 'http://s.zdaye.com/?api=201903221353043521&count=1&px=2'
ipret = curl(url, '', False, False)
time.sleep(5)
print "get ip:" + str(ipret)
ip = str(ipret)
def curl(url, data = '', isCompress = False, use_ip = True):

global ip
if(data):
data = urllib.urlencode(data)
else:
data = None
#headers = {"method":"GET","user-agent":self.ua,"Referer":self.refer, "Cookie":self.cookie, "Upgrade-Insecure-Requests": 1,"Accept-Encoding": "gzip, deflate, br"}
headers = {"method":"GET","Accept-Encoding": "gzip, deflate, br", "user-agent" : "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36"}

try :

#代理代码
if(use_ip) :
opener = urllib2.build_opener(urllib2.ProxyHandler({"https" : ip}))
urllib2.install_opener(opener)

request = urllib2.Request(url, data, headers)
response = urllib2.urlopen(request, timeout=10)

#response = opener.open(request)
if(isCompress) :
buf = StringIO(response.read())
data = gzip.GzipFile(fileobj=buf)
return data.read()
return response.read()

except :
exit()
getIp()
print "get ip retry"
self.curl(url, data, isCompress, use_ip)

#exit()

def setTaskR() :
task_queue.put({'url':'https://www.juzimi.com/tags/%E6%96%B0%E8%AF%97', 'title':'诗词'})

def setTask() :
#for i in range(0, 12) :
for i in range(0, 12) :
url = page_url % (i)
content = curl(url, '', True)
#print url
soup = BeautifulSoup(content, "html.parser")
span = soup.findAll('div',{'class':'views-field-name'})
for tmp in span :
data = {}
href = tmp.find('a').get('href')
title = tmp.find('a').get('title')
data = {"url":"https://www.juzimi.com" + href, "title" : title}
print data
task_queue.put(data)
#print tmp.get('title')
time.sleep(1)

def getFile() :

global has_words
global has_words_value

for line in open('word.log') :
if(line.find('juzimi.com') != -1) :
continue
line = line.split(":", 1)
if(len(line) > 1 and line[1] == 'test') :
continue

#print line[0]
if(not line[0] in has_words) :
has_words.append(line[0])
has_words_value[line[0]] = 1
#print line[0]
else :
has_words_value[line[0]] = has_words_value[line[0]] + 1
has_words = []
for k in has_words_value:
if(has_words_value[k] > 100) :
has_words.append(k)
for line in open('word.url') :
lines = eval(line)
url = lines['url']
title = lines['title'].encode('utf-8')
if(title in has_words) :
continue
task_queue.put(lines)

#runTask()
sleep_time = random.randint(30,60)
#time.sleep(sleep_time)
#time.sleep(60)

def runTask() :
while(not task_queue.empty()) :
data = task_queue.get()
printinfo =[]
hotword = data['title']
url = data['url']
hotword = hotword.encode('utf-8')
#print url
lastIndex = 0
content = curl(url, '', True)
#content = re.sub(r'\n|&nbsp|\xa0|\\xa0|\u3000|\\u3000|\\u0020|\u0020', '', str(content))
content = content.replace('<br/>', '')
content = content.replace('\r', ' ')
soup = BeautifulSoup(content, "html.parser")
last = soup.find('li', {'class', 'pager-last'})
if (not last) :

last = soup.findAll('li', {'class' : 'pager-item'})
if(not last) :
print "get empty:" + url
continue
for tmp in last :
if(int(tmp.text) > lastIndex) :
#print int(tmp.text)
lastIndex = int(tmp.text)
else :
lastIndex = last.text

span = soup.findAll('div',{'class', 'views-field-phpcode-1'})

if(not span) :
print "get empty:" + url
continue

#print url
for tmp in span :
words = tmp.findAll('a')
for word in words :
#printinfo.append({'hotword' : hotword, 'content' : word.text.encode('utf-8')})
print hotword + ":" + word.text.encode('utf-8')
#time.sleep(3)
sleep_time = random.randint(10,20)
#time.sleep(sleep_time)
for i in range(1, int(lastIndex)) :

url = "https://www.juzimi.com/tags/" +hotword + "?page=" + str(i)
#ret = getContent(url, hotword)

t = threading.Thread(target=getContent, args=(url, hotword))
t.start()
"""
for tmp in ret:
printinfo.append(tmp)
"""

"""
for tmp in printinfo :
print tmp['hotword'] + ":" + tmp['content']
"""

def getContent(url, hotword) :
printinfo =[]
#print url
content = curl(url, '', True)
#content = re.sub(r'\n|&nbsp|\xa0|\\xa0|\u3000|\\u3000|\\u0020|\u0020', '', str(content))
content = content.replace('<br/>', '')
content = content.replace('\r', ' ')
soup = BeautifulSoup(content, "html.parser")
last = soup.find('li', {'class', 'pager-last'})
span = soup.findAll('div',{'class', 'views-field-phpcode-1'})
for tmp in span :
words = tmp.findAll('a')
for word in words :
#printinfo.append({'hotword' : hotword, 'content' : word.text.encode('utf-8')})
print hotword + ":" + word.text.encode('utf-8')
sleep_time = random.randint(20,30)
#time.sleep(sleep_time)
#return printinfo

getIp()

getFile()

"""

#setTaskR()
#runTask()
#exit()
"""
executor = ThreadPoolExecutor(max_workers = 50)
#executor.submit(runTask)
#exit()
for i in range(0, 20) :
executor.submit(runTask)

&nbsp;

 

[转]python中str字符串和unicode对象字符串的拼接问题

一个很基本的问题,遇到了,这里记录下

str字符串

s = ‘中文’ # s: <type ‘str’>
s是个str对象,中文字符串。存储方式是字节码。字节码是怎么存的:

如果这行代码在python解释器中输入&运行,那么s的格式就是解释器的编码格式;

如果这行代码是在源码文件中写入、保存然后执行,那么解释器载入代码时就将s初始化为文件指定编码(比如py文件开头那行的utf-8);

unicode对象字符串

unicode是一种编码标准,具体的实现可能是utf-8,utf-16,gbk等等,这就是中文字符串和unicode有密切关系的原因。

python内部使用两个字节存储一个unicode对象(unicode对象并不只能是字符串,这两个字节还可以存其他内容),为什么要用unicode而不用str呢,因为中文转码的缘故,因为unicode的优点是便于跨平台。

s1 = u’中文’ # s1: <type ‘unicode’>
s2 = unicode(‘中文’, ‘utf-8’) # utf8是在指定解码方式, s2: <type ‘unicode’>
str字符串和unicode字符串拼接

只要注意正确的decode、encode方式,统一编码后就能顺利地拼接了。

# -*- coding: utf-8 -*-

s1 = ‘中文’
s2 = u’你好’
print s1 + unicode(s2, ‘utf-8’) # 中文你好
print s1 + s2.decode(‘utf-8’) # 中文你好
print s1.encode(‘utf-8’) + s2 # 中文你好

print type(s1) # <type ‘str’>
print type(s2) # <type ‘unicode’>
print type(s1.decode(‘utf-8’)) # <type ‘unicode’>
print type(s2.encode(‘utf-8’)) # <type ‘str’>
对于str要注意当前环境编码方式,也许是控制台那种设定好了的,也许是你自己在代码中指定的。(看你的代码是在哪里敲的了)
对于unicode对象,一般都是decode得到的,像直接【u’你好’】这种其实不是很常见,所以要注意字符串来源是什么编码,比如从gbk文件或utf8文件中读入的。
———————
作者:Joy_Shen
来源:CSDN
原文:https://blog.csdn.net/index20001/article/details/78974814
版权声明:本文为博主原创文章,转载请附上博文链接!

一款跨平台的Web目录扫描工具

工具是由安全盒子王松编写 是用Python编写的  其中包含脚本识别 后台地址 以及乌云抓的常见漏洞url

这对于Ubuntu系统的用户 特别方便  Windows上也有很多的扫描目录的好工具 比如御剑 wwwscan 等等很多

我自己加入了一点点字典

亲测

从github上下载即可

[AppleScript] 纯文本查看 复制代码
1
2
3
4
5
git clone [url]https://github.com/Strikersb/webdirscan[/url]
cd webdirscan
python webdirscan.py  url

报错的话 安装的第三方Python模块成功解决

[AppleScript] 纯文本查看 复制代码
1
pip install requests

运行图如下

[AppleScript] 纯文本查看 复制代码
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
root@xaiSec:/home/hacker# cd webdirscan
root@xaiSec:/home/hacker/webdirscan# python webdirscan.py -h
usage: webdirscan.py [-h] [-d SCANDICT] [-o SCANOUTPUT] [-t THREADNUM]
                     scanSite
positional arguments:
  scanSite              The website to be scanned
optional arguments:
  -h, --help            show this help message and exit
  -d SCANDICT, --dict SCANDICT
                        Dictionary for scanning
  -o SCANOUTPUT, --output SCANOUTPUT
                        Results saved files
  -t THREADNUM, --thread THREADNUM
                        Number of threads running the program
root@xaiSec:/home/hacker/webdirscan#

翻译后

[AppleScript] 纯文本查看 复制代码
01
02
03
04
05
06
07
08
09
10
11
12
13
14
用法:webdirscan.py [-h] [-d SCANDICT] [-o SCANOUTPUT] [-t THREADNUM]
                      scanSite
位置参数:
   scanSite要扫描的网站
可选参数:
   -h,--help显示此帮助消息并退出
   -d SCANDICT,--dict SCANDICT
                         扫描词典
   -o SCANOUTPUT,--output SCANOUTPUT
                         结果保存的文件
   -t THREADNUM, - thread THREADNUM
                         运行程序的线程数

首先我们先来扫描一个网站 比如我们来扫描下百度= =  嘿嘿
输出结果为以下

[AppleScript] 纯文本查看 复制代码
01
02
03
04
05
06
07
08
09
10
11
12
root@xaiSec:/home/hacker/webdirscan# python webdirscan.py [url]www.baidu.com[/url]
Dirscan is running!
Scan target: [url]http://www.baidu.com[/url]
Total Dictionary: 85025
[200]http://www.baidu.com/robots.txt
[200]http://www.baidu.com/index.htm
[200]http://www.baidu.com/index.php
[200]http://www.baidu.com/index.html
[200]http://www.baidu.com/index.html
[200]http://www.baidu.com/cache/
[200]http://www.baidu.com/index.htm
[200]http://www.baidu.com/robots.txt